Search This Blog

Thursday, October 8, 2015

Aplikasi Kalkulus Integral (Integral Tak Tentu) pada Bidang Ekonomi



BAB I
PENDAHULUAN
1.1           Latar Belakang
Hal yang menarik perhatian adalah bahwasanya ada banyak masalah ekonomi yang ternyata di dalam penyelesaiannya tersebut menggunakan cara-cara kalkulus. Tetapi dari pernyataan tersebut, masih ada suatu kejanggalan pada masyarakat, yang menjadi pertanyaan mereka adalah apakah benar bahwa kalkulus tersebut dapat diterapkan dalam bidang ekonomi? Oleh karena itu, saya bermaksud memberikan suatu pengetahuan kepada masyarakat pada umumnya dan mahasiswa pada khususnya agar mereka setidaknya dapat menambah wawasannya tentang kalkulus yang diterapkan dalam bidang ekonomi.
Banyak diantara materi kalkulus yang diterapkan dalam bidang ekonomi, diantaranya fungsi transenden yang terdiri dari fungsi logaritma dan fungsi eksponen, limit, diferensial fungsi sederhana, diferensial fungsi majemuk, dan integral. Namun, diantara banyaknya materi kalkulus yang dipergunakan dalam menyelesaikan masalah ekonomi tersebut, yang akan saya ambil sebagai materi makalah saya adalah mengenai integral, khususnya integral tak tentu.

1.2      Rumusan Masalah
Berdasarkan uraian latar belakang diatas, maka rumusan masalah yang terkaji dalam makalah ini yakni :
-          Apa yang dimaksud integral ?
-          Apa manfaat integral dalam bidang ekonomi ?
-          Bagaimana penggunaan integral tak tentu dalam bidang ekonomi? 

1.3           Tujuan Penulisan
Berdasarkan rumusan masalah diatas, maka tujuan yang ingin dicapai dalam penulisan makalah ini adalah sebagai berikut:
1.      Mengetahui manfaat integral dalam bidang ekonomi
2.      Mengetahui bagaimana penggunaan integral tak tentu dalam bidang ekonomi
3.       Mengetahui rumus – rumus yang digunakan dalam menghitung integral tak tentu dibidang ekonomi .
1.4       Manfaat Penulisan
Adapun manfaat yang diharapkan dari penulisan makalah ini adalah sebagai berikut:
1.      Bagi penulis
             Pembuatan makalah ini telah memberikan berbagai pengalaman bagi penulis seperti pengalaman untuk mengumpulkan bahan. Disamping itu, penulis juga mendapat ilmu untuk memahami dan menganalisis materi yang ditulis dalam makalah ini. Penulis juga mendapatkan berbagai pengalaman mengenai teknik penulisan makalah, teknik pengutipan, dan teknik penggabungan materi dari berbagai sumber.
2.      Bagi pembaca
Pembaca akan lebih mengetahui pengertian integral tak tentu pada bidang ekonomi.




















BAB II
PEMBAHASAN
2.1         Pengertian Integral
Integral adalah kebalikan dari proses diferensiasi. Integral ditemukan menyusul ditemukannya masalah dalam diferensiasi di mana matematikawan harus berpikir bagaimana menyelesaikan masalah yang berkebalikan dengan solusi diferensiasi.
Integral terbagi dua yaitu integral tak tentu dan integral tertentu. Bedanya adalah integral tertentu memiliki batas atas dan batas bawah. Integral tertentu biasanya dipakai untuk mencari volume benda putar dan luas.
Prinsip-prinsip dan teknik integrasi dikembangkan terpisah oleh Isaac Newton dan Gottfried Leibniz pada akhir abad ke-17. Melalui teorema fundamental kalkulus yang mereka kembangkan masing-masing, integral terhubung dengan diferensial: jika f adalah fungsi kontinu yang terdefinisi pada sebuah interval tertutup [a, b], maka, jika antiturunan F dari f diketahui, maka integral tertentu dari f pada interval tersebut dapat didefinisikan sebagai:

2.2         Pengertian Integral Tak Tentu
Integral tak tentu atau antiderivatif adalah suatu bentuk operasi pengintegralan suatu fungsi yang menghasilkan suatu fungsi baru. Fungsi ini belum memiliki nilai pasti (berupa variabel) sehingga cara pengintegralan yang menghasilkan fungsi tak tentu ini disebut "integral tak tentu".
Bila f adalah integral tak tentu dari suatu fungsi F maka F'= f. Proses untuk memecahkan antiderivatif adalah antidiferensiasi Antiderivatif yang terkait dengan pasti integral melalui "Teorema dasar kalkulus", dan memberikan cara mudah untuk menghitung integral dari berbagai fungsi.
Mengintegralkan suatu fungsi turunan f(x) berarti adalah mencari integral atau turunan antinya, yaitu F(x).
Bentuk umum integral dari f(x) adalah:
∫ f(x) dx = F(x) + k
dimana k adalah sembarang konstanta yang nilainya tidak tertentu.
Dalam rumusan di atas, tanda ∫ adalah tanda integral; f(x) dx adalah diferensial dari F(x); f(x) adalah integral partikular; k adalah konstanta pengintegralan; dan F(x) + k merupakan fungsi asli atau fungsi asal. Proses pengintegralan disebut juga integrasi.
Dalam diferensial kita menemukan bahwa jika misalnya suatu fungsi asal dilambangkan dengan F(x) dan fungsi turunan dilambangkan dengan f(x), maka untuk fungsi asal :
F(x) = x2 + 5
Fungsi turunannya : f(x) = d F(x) = 2xdx
Jika prosesnya dibalik, yakni fungsi turunan f(x) diintegralkan, maka
∫ f(x)dx = F(x) + k = x2 + k
karena derivatif dari setiap konstanta adalah nol, maka dalam mengintegralkan setiap fungsi turuna konstanta k tetap dalam bentuk k. artinya nilai konstanta tersebut tidak dengan sendirinya bisa diisi dengan bilangan tertentu (misalnya 5, dalam contoh tadi), kecuali jika didalam soal memang sudan ditentukan nilai konstantanya. Karena ketidaktentuan nilai konstanta itulah maka bentuk integral yang merupakan kebaliokan dari diferensial dinamakan integral tak tentu.

2.3     Penggunaan Integral Tak Tentu di Bidang Ekonomi
Dalam dunia ekonomi, integral tak tentu ini sering digunakan dalam menyelesaikan masalah fungsi biya, fungsi penerimaan, fungsi utilitas, fungsi produksi serta fungsi konsumsi dan tabungan. Marilah kita lihat masalah seperti apa yang mungkin akan timbul dari masing-masing fungsi tersebut.
Fungsi biaya
Contoh kasus:
Biaya marjinal suatu perusahaan ditunjukkan oleh MC = 3Q2 - 6Q + 4. Carilah persamaan biaya total dan biaya rata-ratanya.
Fungsi penerimaan
Contoh kasus:
Carilah persamaan penerimaan total dan penerimaan rata-rata dari suatu perusahaan jika penerimaan marjinalnya MR = 16 – 4Q
Fungsi utilitas
Contoh kasus:
Carilah persamaan utilitas total dari seorang konsumen jika utilitas marjinalnya MU = 90 – 10Q
Fungsi produksi
Contoh kasus:
Produk marjinal sebuah perusahaan dicerminkan oleh MP = 18x – 3x2 . carilah persamaan produk total dan produk rata-ratanya.
Fungsi konsumsi dan tabungan
Contoh kasus:
Carilah fungsi konsumsi dan fungsi tabungan masyarakat sebuah negara jika diketahui outonomous consumption-nya sebesar 30 milyar dan MPC = 0,8.

2.4           Pendekatan Integral Tak Tentu
Pendekatan integral tak tentu dapat diterapkan untuk mencari persamaan fungsi total dari suatu variabel ekonomi apabila fungsi marjinalnya diketahui. Karena fungsi marjinal pada dasarnya merupakan turunan dari fungsi total, maka dengan proses sebaliknya, yakni integrasi, dapatlah dicari fungsi asal dari fungsi tersebut atau fungsi totalnya.
Fungsi biaya
Biaya total C = f(Q)
Biaya marjinal : MC = C1 = dC/dQ = f1 (Q)
Biaya total tak lain adalah integrasi dari niaya marjinal
C = ∫ MC dQ = ∫ f1 (Q) dQ
Penyelesaian dari masalah yang tersebut diatas:
Biaya total : C = ∫ MCdQ = ∫ (3Q2 - 6Q + 4.) dQ= Q3 - 3Q2 + 4Q + k
Biaya rata-rata : C/Q = Q3 - 3Q2 + 4Q + k/Q
Konstanta k tak lain adalah biaya tetap.
Jika diketahui biaya tetap tersebut adalah 4, maka:
C = Q3 - 3Q2 + 4Q + 4
AC = Q3 - 3Q2 + 4Q + 4/Q

Fungsi Penerimaan
Penerimaan total : R = f(Q)
Penerimaan marjinal : MR = R1 = dR/dQ = f1 (Q)
Penerimaan total tak lain adalah integral dari penerimaan marjinal
R = ∫ MR dQ = ∫ f1 (Q) Dq
Penyelesaian dari masalah yang tersebut diatas:
Penerimaan total : R = ∫ MR dQ= ∫ (16 – 4Q) dQ= 16Q – 2Q2
Penerimaan rata-rata : AR = R/Q = 16 – 2Q
Dalam persamaan penerimaan total konstanta k = 0, sebab penerimaan tidak akan ada.
jika tak ada barang yang dihasilkan atau terjual.

Fungsi Utilitas
Utilitas total : U = f(Q)
Utilitas marjinal : MU = U1 = dU/dQ = f1 (Q)
Utilitas total tak lain adalah integral dari utilitas marjinal
U = ∫ MU dQ = f1 (Q) dQ
Penyelesaian dari masalah yang tersebut diatas:
Utilitas total: U = ∫ MU dQ = ∫ (90 – 10Q) dQ = 90Q – 5Q2
Seperti halnya produk total dan penerimaan total, disinipun konstanta k = 0, sebab tak ada kepuasan atau utilitas yang diperoleh seseorang jika tak ada barang yang dikonsumsi.

Fungsi Produksi
Produsi total :P = f(x) dimana P = keluaran; x = masukan
Produk marjinal : MP = P1 = dP/dX = f1 (x)
Produk total tak lain adalah integral dari produk marjinal
P = ∫ MPdX = ∫ f1 (x) dX
Penyelesaian dari masalah yang tersebut diatas:
Produk total : P = ∫ MPdX = ∫ (18x – 3x2 ) dX = 9x2 – x3
Produk rata-rata : AP = p/x = 9x – x2

Fungsi Konsumsi dan Fungsi Tabungan
Dalam ekonomi makro, konsumsi (C) dan tabungan (S) dinyataka fungsional terhadap pendapatan nasional (Y).
C = f(Y) = a + By
MPC = C 1 = dC/dY = f 1 (Y) = b
Karena Y = C + S, maka
S = g(y) = -a + (1 – b) Y
MPS = S1 = dS/dY = g 1 (Y) = (1 – b)
Berdasarkan kaidah integrasi, konsumsi dan tabungan masing-masing adalah integral dari marginal propensity to consume dan marginal propensity to save.
C = ∫ MPC dY = F(Y) + k k ≡ a
S = ∫ MPS dY = G(Y) + k k ≡ -a
Konstanta k pada fungsi produksi dan fungsi tabungan masing-masing adalah outonomous consumption dan outonomous saving.
Penyelesaian dari masalah yang tersebut diatas:
C = ∫ MPC dY = ∫ 0,8 Y + 30 milyar.
S = ∫ MPS dY = ∫ 0,2 Y – 30 milyar.
Atau S = Y – C = Y – (0,8 Y – 30 milyar) = 0,2Y – 30 milyar.    



















BAB III
PENUTUP

3.1   Kesimpulan
1.    Integral adalah kebalikan dari proses diferensiasi. Integral ditemukan menyusul ditemukannya masalah dalam diferensiasi di mana matematikawan harus berpikir bagaimana menyelesaikan masalah yang berkebalikan dengan solusi diferensiasi.
2.    Integral terbagi dua yaitu integral tak tentu dan integral tertentu. Bedanya adalah integral tertentu memiliki batas atas dan batas bawah. Integral tertentu biasanya dipakai untuk mencari volume benda putar dan luas.
3.    Mengintegralkan suatu fungsi turunan f(x) berarti adalah mencari integral atau turunan antinya, yaitu F(x).
4.    Dalam dunia ekonomi, integral tak tentu ini sering digunakan dalam menyelesaikan masalah fungsi biaya, fungsi penerimaan, fungsi utilitas, fungsi produksi serta fungsi konsumsi dan tabungan.
5.      Pendekatan integral tak tentu dapat diterapkan untuk mencari persamaan fungsi total dari suatu variabel ekonomi apabila fungsi marjinalnya diketahui.

3.2  Saran
            Semoga penulis dan pembaca dapat mengetahui dan memahami aplikasi integral dalam bidang ekonomi yaitu menyelesaikan masalah fungsi biaya, fungsi penerimaan, fungsi utilitas, fungsi produksi serta fungsi konsumsi dan tabungan.









DAFTAR PUSTAKA

Boediono. 2002. Ekonomi Kalkulus. PT REMAJA ROSDAKARYA: Bandung
                             Purcell, Verberg, Rigdon. 2004. Kalkulus Edisi Kedelapan Jilid 2. Jakarta : Erlangga
Stewart, James. 2003. Kalkulus Edisi Keempat Jilid 2. Jakarta : Erlangga
http://id.wikipedia.org/wiki/integral-tak-tentu