Search This Blog

Monday, September 28, 2015

Statistik Parametrik



Saat kita hendak melakukan suatu riset, seringkali kita dihadapkan pada pilihan metode. Metode statistik apakah yang cocok digunakan dalam riset kita tersebut. Dalam mempelajari statistik, biasanya kita langsung dihadapkan pada metode statistik parametrik, padahal tidak semua data cocok diolah dengan statistik parametrik. Walaupun perkembangan statistik parameter sudah sedemikian canggih namun statistik parametrik memiliki beberapa kekurangan, misalnya pada masalah-masalah sosial yang memiliki skala nominal dan rasio, statistik parametrik tidak mampu mengukur dengan baik. Kalaupun bisa, hal tersebut merupakan upaya yang berlebihan (excessively method). Maka Statistik parametrik digunakan jika kita telah mengetahui model matematis dari distribusi populasi suatu data yang akan dianalisis. Jika kita tidak mengetahui suatu model distribusi populasi dari suatu data dan jumlah data relatif kecil atau asumsi kenormalan tidak selalu dapat dijamin penuh,maka kita harus menggunakan statistik non parametrik (statistik bebas distribusi).
Berikut ini adalah ringkasan yang memuat perbedaan antara Statistik Parametrik dan Statistik Non Parametrik. Dengan memahami perbedaan antara keduanya, diharapkan kita bisa menemukan metode statistik yang tepat dalam mengolah data riset yang tepat.

STATISTIK PARAMETRIK
Statistik Parametrik, yaitu ilmu statistik yang mempertimbangkan jenis sebaran atau distribusi data, yaitu apakah data menyebar secara normal atau tidak. Dengan kata lain, data yang akan dianalisis menggunakan statistik parametrik harus memenuhi asumsi normalitas. Pada umumnya, jika data tidak menyebar normal, maka data seharusnya dikerjakan dengan metode statistik non-parametrik, atau setidak-tidaknya dilakukan transformasi terlebih dahulu agar data mengikuti sebaran normal, sehingga bisa dikerjakan dengan statistik parametrik.

Contoh metode statistik parametrik :
a. Uji-z (1 atau 2 sampel)
b. Uji-t (1 atau 2 sampel)
c. Korelasi pearson,
d. Perancangan percobaan (one or two-way anova parametrik), dll.

Ciri-ciri statistik parametrik :
- Data dengan skala interval dan rasio
- Data menyebar/berdistribusi normal



Keunggulan dan kelemahan statistik parametrik :
Keunggulan :
1.      Syarat syarat parameter dari suatu populasi yang menjadi sampel biasanya tidak diuji dan dianggap memenuhi syarat, pengukuran terhadap data dilakukan dengan kuat.
2.      Observasi bebas satu sama lain dan ditarik dari populasi yang berdistribusi normal serta memiliki varian yang homogen.
Kelemahan :
1.      Populasi harus memiliki varian yang sama.
2.      Variabel-variabel yang diteliti harus dapat diukur setidaknya dalam skala interval.
3.      Dalam analisis varian ditambahkan persyaratan rata-rata dari populasi harus normal dan bervarian sama, dan harus merupakan kombinasi linear dari efek-efek yang ditimbulkan.

STATISTIK NON-PARAMETRIK
            Statistik Non-Parametrik adalah test yang modelnya tidak menetapkan syarat-syaratnya yang mengenai parameter-parameter populasi yang merupakan induk  sampel penelitiannya. Oleh karena itu observasi-observasi independent dan variabel yang diteliti pada dasarnya memiliki kontinuitas. Uji metode non parametrik atau bebas sebaran adalah prosedur pengujian hipotesa yang tidak mengasumsikan pengetahuan apapun mengenai sebaran populasi yang mendasarinya kecuali selama itu kontinu.
            Pendeknya: Statistik Non-Parametrik adalah yaitu statistik bebas sebaran (tidak mensyaratkan bentuk sebaran parameter populasi, baik normal atau tidak). Selain itu, statistik non-parametrik biasanya menggunakan skala pengukuran sosial, yakni nominal dan ordinal yang umumnya tidak berdistribusi normal.


UJI Beda (t-Test)
Ada 3 jenis analisis data : univariat, bivariat dan multivariat. Bivariat berarti 2 variabel. Dalam posisi kerangka konsep penelitian, 2 variabel tersebut menempati posisi 1 variabel sebagai variabel independen (mempengaruhi) dan 1 variabel sebagai dependen variabel (variabel terpengaruh). Dalama analisis dua sisi (2 side) tidak dapat ditentukan mana variabel independen dan mana variabel dependen. Peneliti sendiri yang menterjemahkan variabel tersebut. Analisis data menggunakan komputer, bila kedua variabel tersebut diputar - letakkan, maka hasilnya akan sama (bukti).
Berdasarkan bentuk data (kategorik/numerik), maka ada 4 kemungkinan pasangan variabel yang akan diuji dalam analisis bivariate, yaitu :
1. Kategoriikk – kategorik
2. Kategorik – numerik
3. Numerik - kategorik, dan
4. Numerik – numerik

Oleh karena arah pengujian dalam analisis 2 sisi tidak dapat ditentukan, maka jenis ketiga dan keempat ujinya sama.. Untuk uji kategorik-kategorik disebut uji beda proporsi, untuk uji no.2 dan 3 disebut uji beda rata-rata, dan uji keempat uji korelasi bivariat. Uji beda rata-rata terbagi 2 jenis : jika 2 rata-rata uji t-test dan apabila lebih dari 2 rata uji Anova.
Pengujian / analisis data mengacu kepada tujuan penelitian. Dengan demikian, analisis data adalah sebuah upaya menggunakan statistik untuk menjawab tujuan penelitian. Ada beberapa langkah melakukan pengujian data yang mengacu kepada tujuan penelitian pada uji bivariate. Langkah-langkah pengujian ini disusun oleh penulis untuk memperkuat pemahaman bahwa statistik hanyalah sebuat alat bantu untuk mengambil keputusan atau kesimpulan. Artinya, tanpa statistik sebenarnya kesimpulan bisa diambil. Akan tetapi  untuk lebih meyakinkan atau apabila secara visuals sulit mengambil kesimpulan, maka digunakanlah statistik (uji). Dengan kata lain pemilihan jenis uji statistik disesuaikan dengan bentuk data, bukan sebaliknya data yang menyesuaikan dengan uji yang akan digunakan. Pada penjelasan berikut ini, tujuan penelitian sudah ada sebelumnya (pada proposal penelitian).
Anova (analysis of varian) digunakan untuk menguji perbedaan mean (rata-rata) data lebih dari dua kelompok. Misalnya kita ingin mengetahui apakah ada perbedaan rata-rata lama hari dirawat antara pasien kelas VIP, I, II, dan kelas III. Anova mempunyai dua jenis yaitu analisis varian satu faktor (one way anova) dan analsis varian dua faktor (two ways anova). Pada kesempatan ini hanya akan dibahas analisis varian satu faktor.



Uji Beda 2-Rata-rata (t-test)
Pengertian
Di bidang kesehatan sering kali kita harus membuat kesimpulan apakah suatu intervensi berhasil atau tidak. Untuk mengukur keberhasilan tersebut kita harus melakukan uji untuk melihat apakah parameter (rata-rata) dua populasi tersebut berbeda atau tidak. Misalnya, apakah ada perbedaan rata-rata tekanan darah populasi intervensi (kota) dengan populasi kontrol (desa). Atau, apakah ada perbedaan rata-rata berat badan antara sebelumdengan sesudah mengikuti program diet. Sebelum kita melakukan uji statistik dua kelompok data, kita perlu perhatikan apakah dua kelompok data tersebut berasal dari dua kelompok yang independen atau berasal dari dua kelompok yang dependen/berpasangan. Dikatakan kedua kelompok data independen bila populasi kelompok yang satu tidak tergantung dari populasi kelompok kedua, misalnya membandingkan rata-rata tekanan darah sistolik orang desa dengan orang kota. Tekanan darah orang kota adalah independen (tidak tergantung) dengan orang desa. Dilain pihak, dua kelompok data dikatakan dependen/pasangan bila datanya saling mempunyai ketergantungan, misalnya data berat badan sebelum dan sesudah mengikuti program diet berasal dari orang yang sama (data sesudah dependen/tergantung dengan data sebelum).

Konsep Uji Beda Dua Rata-rata

Uji beda rata-rata dikenal juga dengan nama uji-t (t-test ).  Konsep dari uji beda rata-rata adalah membandingkan nilai rata-rata beserta selang kepercayaan tertentu (confidenceinterval) dari dua populasi. Prinsip pengujian dua rata-rata adalah melihat perbedaan variasikedua kelompok data. Oleh karena itu dalam pengujian ini diperlukan informasi apakah varian kedua kelompok yang diuji sama atau tidak. Varian kedua kelompok data akan berpengaruh pada nilai standar error yang akhirnya akan membedakan rumus pengujiannya.Dalam menggunakan uji-t ada beberapa syarat yang harus dipenuhi. Syarat/asumsi utama yang harus dipenuhi dalam menggunakan uji-t adalah data harus berdistribusi normal.Jika data tidak berdistribusi normal, maka harus dilakukan transformasi data terlebih dahulu untuk menormalkan distribusinya. Jika transformasi yang dilakukan tidak mampu.  menormalkan distribusi data tersebut, maka uji-t tidak valid untuk dipakai, sehingga disarankan untuk melakukan uji non-parametrik seperti Wilcoxon (data berpasangan) atauMann-Whitney U (datindependen).Berdasarkan karakteristik datanya maka uji beda dua rata-rata dibagi dalam dua kelompok, yaitu: uji beda rata-rata independen dan uji beda rata-rata berpasangan.

Aplikasi Uji-t Dependen pada Data Berpasangan
Uji-t untuk data berpasangan berarti setiap subjek diukur dua kali. Misalnya sebelum dan sesudah dilakukannya suatu intervensi atau pengukuran yang dilakukan terhadap pasangan orang kembar.


Daftar Pustaka

Amry,z. 2014. Statistika Matematika Lanjut. FMIPA: Unimed
Asmin, 2012. Modul Pembelajaran Statistika Matematika. FMIPA: Unimed
Sudjana, 2007. Metoda Statistika. FMIPA :Unimed

No comments:

Post a Comment